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Applying Jahn's method of reduction of a representation and using the authors' method of construction 
of the magnetic symmetry groups, the significant features of the second order piezomagnetic coefficients 
for the 90 magnetic crystal classes have been described. 

Physical properties of substances generally represent 
the relation between two quantities each of which may 
be a scalar, or a vector or a symmetric tensor, etc. 
A physical property is referred to as a magnetic prop- 
erty if one or both of the interacting physical quantities 
involve the magnetic field, or the magnetic induction 
or the magnetic moment. Piezomagnetism is the ap- 
pearance of a magnetic moment on the application of 
a stress. The possibility of its existence in magnetic 
crystals has been predicted by Tavger (1958), Dzialo- 
shinskii (1958) and Landau & Lifshitz (1960). Its oc- 
currence has been experimentally verified and measured 
by Borovik-Romanov (1959) in the fluorides of cobalt 
and manganese in their anti-ferromagnetic state. The 
non-vanishing independent first order piezomagnetic 
constants involving the magnetic moment M and the 
symmetric polar second rank stress tensor a have been 
enumerated by Bhagavantam & Pantulu (1964) em- 
ploying the character method (Bhagavantam & Surya- 
narayana, 1949) in respect of the 90 magnetic crystal 
classes. Sixty-six out of the ninety magnetic crystal 
classes are shown to be piezomagnetic. The orienta- 
tions of the magnetic moments of those magnetic struc- 
tures, which correspond to these 66 piezomagnetic 
crystal classes, have been described by Koptsik (1966). 
The number of such magnetic structures has been 
shown to be 353 when the first order piezomagnetic 
effects alone are considered. 

The first order piezomagnetic coefficients C~j~ are 
studied from the relation 

M~ = X Gj~a~e , (i,j,k = 1,2, 3),  
],k 

where M and a stand for the induced magnetic moment 
and the applied stress. In this note it is proposed to 
investigate the second order piezomagnetic effects in 
crystals by including the symmetrized square of the 
polar second rank stress tensor in the above relation. 
Thus the appropriate axial tensor is of rank 5 and is 
magnetic. It is shown here that 69 magnetic crystal 
classes exhibit second order piezomagnetism. 

If V denotes the representation of an axial vector, 
then the symmetrical product, IV 2] (Tisza, 1933), of V 
with itself, represents the six components of the sym- 
metric second rank tensor. The appropriate form of 
the representation pertaining to the second order piezo- 

magnetic effects is represented by V[[V212]. In its re- 
duced form its value is 4D1 + 2D2 + 3D3 + D4-a t- D5*. 

It has already been shown by the authors (Krishna- 
murty & Gopalakrishnamurty, 1969) that the real 
one-dimensional irreducible representations of a point 
group not only induce the magnetic symmetry groups 
associated with the point group but also give the num- 
ber of constants required to describe a magnetic prop- 
erty for the induced magnetic symmetry groups. Thus 
by applying Jahn's (1949) method, one can derive the 
second order piezomagnetic coefficients for the 90 
magnetic symmetry groups, which will be the numerical 
coefficients of the real one-dimensional irreducible re- 
presentations of 32 point groups in the reduced form 
of the appropriate representation. Substituting the re- 
duced form of DL given by Jahn (1938, 1949) for the 
point group 43m and the axial groups respectively, and 
by the authors (1968) for the point group 42m, the 
second order piezomagnetic coefficients of the 90 crys- 
tal classes are enumerated here. They are given below 
against the distinct inducing real one-dimensional ir- 
reducible representations of the 32 point groups in 
terms of which the 90 magnetic symmetry groups have 
been derived earlier by the authors (1969): 

1" 63; T" 63; rn: 29, A"(34); 2: 29, B(34); 2]m :29, Bg(34); 
2mm'12, Bl(17), A2(17); 222"12, B3(17); mmm'12, 
B,g(17); 4"15, B(14); 4"15, B(14); 4]m:15, Bg(14); 
4mm:5, A2(10), B1(7); 42m:5, B1(7), Bz(7), A2(10); 
422:5, Az(10), Bt(7); 4/mmm:5, Azg(10), Bw(7); 3:21; 
3:21; 3m:8, A2(13); 32:8, Az(13); 3m:8, Azg(13); ~: 11, 
A"(10); 6:11, B(10); 6 / m ' l l ,  Bg(10); gm2:3, A~(8), 
A,,{~ . . 2wj, A~(5), 6mm 3, Az(8), B~(5); 622:3, A2(8), B1(5), 
6/mmm:3, Azg(8), Bw(5); 23:4; m3:4; 43m:1, Az(3); 
432"1, Az(3) and m3m: 1, Azg(3). 

Here the figures in brackets appearing against an 
alternating representation (non-total symmetric real 
one-dimensional representation) of a crystallographic 

* DL is a representation of dimension 2L+ 1 of the group 
Ro~. Superscripts g or u distinguish DL according to its being 
even or odd with respect to inversion. Since piezomagnetism 
is a centrosymmetric property, the superscript g to DL is 
omitted in this note. The notation for the description of the 
real one-dimensional irreducible representations of the crystal- 
lographic point groups is explained by the authors in the 
preceding paper (Krishnamurty & Gopalakrishnamurty, 1969). 
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point group give the number of the second order piezo- 
magnetic coefficients required by the magnetic sym- 
metry group induced by that alternating representation 
of the point group, while the numbers (not in brackets) 
against a point group indicate the number of the second 
order coefficients appropriate to the point group. The 
21 magnetic symmetry groups, which are induced by 
the 21 alternating representations of the 32 point 
groups in each of which the centre of inversion has 
the character - 1 ,  and which do not require piezo- 
magnetic coefficients of any order, are not included in 
the above list. 

It is interesting to note that the number of the piezo- 
magnetic coefficients appearing against the equivalent 
alternating representations (Krishnamurty & Gopala- 
krishnamurty, 1969)ofa point group will be the same. 
However, from the equality of the numbers of the 
piezomagnetic coefficients coming under the alternat- 
ing representations of a point group one cannot con- 
clude that the representations are equivalent. For 
instance, from the above list one observes that the 
alternating representations B1, A2 of the point group 
2rnm; Ba, B2 of 42rn and A~, A~ of 6m2 are not equi- 
valent. 

Further one may also notice that the crystallographic 
point groups 43m, 432 and m3m require non-vanishing 
second order piezomagnetic coefficients whereas no 
first order constants survive for the three point groups 
(Bhagavantam & Pantulu, 1964; Koptsik, 1966). The 
appearance of the second order piezomagnetic coef- 
ficients for these three cubic point groups will give rise 
to a greater number of magnetic structures. 

From the very structure of the reduced form of the 
representation V[[V212], it is evident that an isotropic 
solid R~ does not exhibit piezomagnetism since the 
term Do (Jahn, 1949) is absent in the reduced form of 
the representation. 

The authors wish to express their thanks to Professor 
T. Venkatarayudu for his kind interest in the problem. 
The authors' thanks are also due to the referee for his 
suggestions towards improvements in the style of the 
paper. 
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Using the method of construction of the magnetic symmetry groups already developed by the authors, 
the magnetic symmetry groups associated with the limiting groups have been derived. The number of 
constants required to describe the three magnetic properties studied for each one of the derived magnetic 
symmetry groups is also enumerated. 

The crystallographic point groups consist of rotations 
and rotation-reflexions. Fivefold and higher than six- 
fold rotation axes are forbidden in the 32 conventional 
point groups. There is however, a special category of 
point groups in which infinite-fold rotation axes and 
reflexions are also permitted symmetry operations. 
These special groups, seven in number, are called lim- 
iting groups (Shubnikov & Belov, 1964), also known as 
Curie groups. Polycrystalline bodies, fibrous materials 
like wood, etc. belong to a category of substances 
known as textures. Among a multitude of textures, 

those possessing the symmetry of limiting groups are 
of particular interest. 

Following the method of the authors (Krishnamurty 
& Gopalakrishnamurty, 1969) for the construction of 
the magnetic symmetry groups corresponding to a 
point group from its real one-dimensional irreducible 
representations, the magnetic variants of the limiting 
groups are derived in this note. The numbers of the 
non-vanishing independent constants in respect of the 
magnetic properties: (1) pyromagnetism, (2) magneto- 
electric polarizability and (3) piezomagnetism, of such 


